Approximation theorem for meyer - konig - zeller operator 算子的逼近定理
Iterative approximation theorem on solutions to nonlinear strongly accretive operator equations 非線性強增生算子方程解的迭代逼近定理
In this paper , we use the coupled fixed point theorem for mixed monotone condensing operators to obtain an existence , uniqueness and iterative approximation theorem of solutions of initial value problems for second order mixed monotone type of impulsive differential equations 利用混合單調(diào)凝聚算子的耦合不動點定理,給出了二階混合單調(diào)型脈沖微分方程的初值問題的解的存在唯一性及迭代逼近定理
Secondly , using the relation between the weighted modified k - functional , the weighted modulus of smoothness , the weighted main - part modulus of smoothness . we get the pointwise direct and inverse approximation theorem with jacobi weight for s ' zdsz - kantorovich operator . thus some results on w ( x ) = 0 ( w ( x ) denotes the weight function ) , ditzian - totik modulus and classic modulus are extend 其次,引入一種改變的帶權(quán)k -泛函,利用帶權(quán)光滑模和帶權(quán)主部光滑的關(guān)系及帶權(quán)光滑模與改變帶權(quán)k -泛函的等價性,關(guān)于sz sz - kantorovich算子,討論了一階矩不為零的算子的點態(tài)帶jacobi權(quán)逼近正定理及等價定理,推廣了已有的權(quán)為零及ditzian - totik光滑模和古典光滑模的結(jié)果。